Near-Infrared Emitting CuInSe2/CuInS2 Dot Core/Rod Shell Heteronanorods by Sequential Cation Exchange
نویسندگان
چکیده
The direct synthesis of heteronanocrystals (HNCs) combining different ternary semiconductors is challenging and has not yet been successful. Here, we report a sequential topotactic cation exchange (CE) pathway that yields CuInSe2/CuInS2 dot core/rod shell nanorods with near-infrared luminescence. In our approach, the Cu(+) extraction rate is coupled to the In(3+) incorporation rate by the use of a stoichiometric trioctylphosphine-InCl3 complex, which fulfills the roles of both In-source and Cu-extracting agent. In this way, Cu(+) ions can be extracted by trioctylphosphine ligands only when the In-P bond is broken. This results in readily available In(3+) ions at the same surface site from which the Cu(+) is extracted, making the process a direct place exchange reaction and shifting the overall energy balance in favor of the CE. Consequently, controlled cation exchange can occur even in large and anisotropic heterostructured nanocrystals with preservation of the size, shape, and heterostructuring of the template NCs into the product NCs. The cation exchange is self-limited, stopping when the ternary core/shell CuInSe2/CuInS2 composition is reached. The method is very versatile, successfully yielding a variety of luminescent CuInX2 (X = S, Se, and Te) quantum dots, nanorods, and HNCs, by using Cd-chalcogenide NCs and HNCs as templates. The approach reported here thus opens up routes toward materials with unprecedented properties, which would otherwise remain inaccessible.
منابع مشابه
Microwave-assisted cation exchange toward synthesis of near-infrared emitting PbS/CdS core/shell quantum dots with significantly improved quantum yields through a uniform growth path.
In this study, we develop a reproducible and controllable microwave-assisted cation exchange approach, for the first time, to quickly synthesize high-quality, near-infrared emitting PbS/CdS core/shell quantum dots (QDs). These monodisperse QDs, emitting in the range of 1300-1600 nm, show a quantum yield as high as 57% that is ~1.4 times higher than that achieved by the same QDs prepared using c...
متن کاملHighly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS2/ZnS Core/Shell Colloidal Quantum Dots
Copper indium sulfide (CIS) quantum dots (QDs) are attractive as labels for biomedical imaging, since they have large absorption coefficients across a broad spectral range, size- and composition-tunable photoluminescence from the visible to the near-infrared, and low toxicity. However, the application of NIR-emitting CIS QDs is still hindered by large size and shape dispersions and low photolum...
متن کاملControllable conversion of plasmonic Cu2-xS nanoparticles to Au2S by cation exchange and electron beam induced transformation of Cu2-xS-Au2S core/shell nanostructures.
Self-doped Cu2-xS nanocrystals (NCs) were converted into monodisperse Cu2-xS-Au2S NCs of tunable composition, including pure Au2S, by cation exchange. The near-infrared (NIR) localized surface plasmon resonance (LSPR) was dampened and red-shifted with increasing Au content. Cation exchange was accompanied by elimination of cation vacancies and a change in crystal structure. Partially exchanged ...
متن کاملBiocompatible and highly luminescent near-infrared CuInS₂/ZnS quantum dots embedded silica beads for cancer cell imaging.
Bright and stable CuInS2/ZnS@SiO2 nanoparticles with near-infrared (NIR) emission were competently prepared by incorporating the as-prepared hydrophobic CuInS2/ZnS quantum dots (QDs) directly into lipophilic silane micelles and subsequently an exterior silica shell was formed. The obtained CuInS2/ZnS@SiO2 nanoparticles homogeneously comprised both single-core and multicore remarkable CuInS2/ZnS...
متن کاملTuning light emission of PbS nanocrystals from infrared to visible range by cation exchange
Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation ...
متن کامل